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In this paper we discuss a class of a priori inequalities of a type appearing 
frequently in linear partial differential equations and outline the connection with 
the class of all weakly compact operators. The point of departure is the well-
known result due to Bartle, Dunford and Schwartz [1] asserting the existence of 
a control measure for each weakly compact operator given on a space C(S) and 
the reader can remark easily that our main result (Theorem 4) provides a more 
precise estimate than that obtained in [1]. Estimates of the same type hold also 
for p-absolutely summing operators (1 < p < °°) as well as for the compact ones, 
which shows an interesting connection between these classes. Finally we extend 
the well-known criterion of compactness in a space lp (1 < p < «>) by proving 
that, on a space which does not contain an isomorph of lx, the compact operators 
are completely determined by certain a priori inequalities. 

The details will appear elsewhere. 
Let X, Y be two Banach spaces and let p be a continuous seminorm on X. 

The following definition extends considerably a basic concept in the theory of 
vector measures: 

1. DEFINITION. An operator TE L(X, Y) is said to be absolutely continu

ous with respect to p (i.e., T< p) if the following equivalent conditions hold: 
(ACj) for every e > 0 there is a Ô = 0(e) > 0 such that if llxll < 1, pipe) < 

8, then 17*1 < e; 

(AC2) for every e > 0 there is a Ô = 6(e) > 0 such that 117*11 < ellxll + 
bpipc) whenever x E X\ 

(AC3) given a bounded sequence {xn}n C X, then either there exists a posi
tive constant c > 0 such that \\T(xn)\\ < cp(xn) for all n E N or there exists a 
subsequence {xn } k such that T(xn ) —* 0. 

This notion is implicit in many papers on partial differential equations in 
which case p is associated with an inner product. Inequalities such as Garding's 
or Friedrichs' are consequences of the fact that suitable operators are absolutely 
continuous. 

A local condition for absolute continuity was introduced in [5] for opera
tors given on Banach lattices and used to describe the structure of Banach lattices 
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having an order continuous topology. (See also [6].) 
In the following, by an absolutely continuous operator (abbreviated a.c. op-

erator) we shall always mean an operator which is a.c. with respect to a prenucle-
ar seminorm p [i.e., a seminorm p such that 

p(x)<f\(x,x*)\dix(x% 

where // is a positive Radon measure on the unit ball of X*]. 
The results below yield that each r-absolutely summing operator (1 < r < 

°°) and each compact operator is a.c. Using the Riesz convexity theorem one can 
obtain the same conclusion for inclusion mappings i : lx —• lq, 1 < q < °° (com
municated to the author by D. Lewis). 

2. REMARK. An operator whose restriction to an infinite dimensional sub-
space is an isomorphism into cannot be a.c. (Use Dvoretzky's-Rogers' result in 
[2] and (AC2).) In particular, if i G L(X, Y) is an isomorphism into 
and TG L(Xf Y) is a.c, then Ker(/ + T) is finite dimensional. 

The product of an a.c. operator and a continuous mapping is always a.c, 
and thus the a.c operators constitute a Banach ideal of operators in the sense of 
Retsch. An a.c operator maps bounded sequences into weak Cauchy sequences 
(use the main result in [7]) and Lebesgue's theorem on dominated convergence 
yields that each a.c. operator maps weak Cauchy sequences into convergent se
quences. Therefore the product of two a.c. operators is a compact one. 

3. REMARK. An operator Tis a.c iff T** is a.c Combining with the results 
above we check that every a.c. operator on an I.*,-space (i.e., a Banach space 
whose topological dual is isomorphic to a complemented subspace of some Lx(jx)) 

is weakly compact. The converse is a consequence of the following: 

4. THEOREM. Let X be an Loo-space and let A be a bounded subset of X*. 
The following assertions are equivalent'. 

(a) A is a(X*, X**) relatively compact; 
(b) there is a prenuclear seminorm p on X such that A < p uniformly [Le., 

for every e> Owe can find a 3 = 8(e) > 0 such that llxll < 1, p(x) < ô implies 
that sup{Kx, x*)\, x* E A} < 8]. 

5. COROLLARY. An operator given on an Loo-space is weakly compact iff 
it is ax. 

6. COROLLARY . Each compact operator is a.c. 

Use Corollary 4 in [4, p. 24]. 

7. COROLLARY. Let X be a Banach space which does not contain an iso-
morph oflx. Then a bounded subset A C I * i s relatively compact iff there exists 
a prenuclear seminorm p on X such that k<p uniformly. 

The assumption about lx is essential. In fact, if X contains lx then there 
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exists an integral operator TG L(X, Lx(09 1)) which is not compact. 
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